Mass-mass problems (no answers, yet!!)

- $1.4 \, FeCr_2O_7 + 8 \, K_2CO_3 + O_2 \longrightarrow 2 \, Fe_2O_3 + 8 \, K_2CrO_4 + 8 \, CO_2$
 - (a) How many grams of FeCr₂O₇ are required to pruduce 44.0 g of CO₂?
 - (b) How many grams of O₂ are required to produce 100.0 g of Fe₂O₃?
 - (c) If 300.0 g of FeCr₂O₇ react, how many g of O₂ will be consumed?
 - (d) How many g of Fe₂O₃ will be produced from 300.0 g of FeCr₂O₇?
 - (e) How many grams of K₂CrO₄ are formed per gram of K₂CO₃ used?
- 2. Given the reaction $S + O_2 \longrightarrow SO_2$
 - (a) How many grams of sulfur must be burned to give 100.0 g of SO₂
 - (b) how many grams of oxygen will be required for the reaction in part (a)?
- 3. 6 NaOH + 2 Al ---> 2 Na₃AlO₃ + 3 H₂
 - (a) How much aluminum in required to produce 17.5 g of hydrogen?
 - (b) How much Na₃AlO₃ can be formed from 165.0 g of sodium hydroxide?
 - (c) How many moles of NaOH are required to produce 3 g of hydrogen?
 - (d) How many mol of hydrogen can be prepared from 1 gram atom of aluminum?
- 4. BaO + H_2SO_4 ---> $BaSO_4$ + H_2O
 - (a) How much BaSO₄ can be formed from 196.0 g of H₂SO₄?
 - (b) If 81.00 g of water is formed during this reaction, how much BaO was used?
- 5. NaCl + AgNO₃ ---> AgCl + NaNO₃
 - (a) 78.00 g of NaCl should produce how many grams of AgCl?
 - (b) How much AgCl can be produced from 107.0 g of AgNO₃?
- $6. \ B_2O_3 \ + \ 3 \ Mg \ ---> \ 3 \ MgO \ + \ 2B$
 - (a) How much boron can be obtained from 10.00 tons of B_2O_3 ?
 - (b) how much magnesium is required to produce 400.0 lbs of boron?
- 7. SnO_2 is reduced by carbon according to the this reaction: $SnO_2 + C \longrightarrow Sn + CO_2$
 - (a) How many pounds of CO_2 are formed when 1.00 ton of tin is produced?
 - (b) How much SnO_2 is required to produce 6.00 tons of tin?
 - (c) How much tin is produced per ton of carbon used?
- $8. \ 2 \ KMnO_4 + H_2SO_4 ---> K_2SO_4 + Mn_2O_7 + H_2O$
 - (a) How many moles of Mn₂O₇ can be formed from 196.0 g of KMnO₄?
 - (b) How many grams of Mn₂O₇ can be formed from 390.0 g of KMnO₄?
 - (c) How much H_2SO_4 is needed to produce 27.00 g of water?
- 9. Determine moles of barium bromate that can be prepared from 7.000 moles each of $HBrO_3$ and $Ba(OH)_2$ given this equation: $HBrO_3 + Ba(OH)_2 ---> Ba(BrO_3)_2 + H_2O$
- 10. Determine moles of Na_2S that can be prepared by the reaction of 0.2240 moles of sodium with 0.1320 moles of sulfur. Which reactant is the limiting factor? 16 Na + S₈ ---> 8 Na₂S